(-3x^2)+56x-124=0

Simple and best practice solution for (-3x^2)+56x-124=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3x^2)+56x-124=0 equation:


Simplifying
(-3x2) + 56x + -124 = 0

Reorder the terms:
-124 + 56x + (-3x2) = 0

Solving
-124 + 56x + (-3x2) = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
41.33333333 + -18.66666667x + x2 = 0

Move the constant term to the right:

Add '-41.33333333' to each side of the equation.
41.33333333 + -18.66666667x + -41.33333333 + x2 = 0 + -41.33333333

Reorder the terms:
41.33333333 + -41.33333333 + -18.66666667x + x2 = 0 + -41.33333333

Combine like terms: 41.33333333 + -41.33333333 = 0.00000000
0.00000000 + -18.66666667x + x2 = 0 + -41.33333333
-18.66666667x + x2 = 0 + -41.33333333

Combine like terms: 0 + -41.33333333 = -41.33333333
-18.66666667x + x2 = -41.33333333

The x term is -18.66666667x.  Take half its coefficient (-9.333333335).
Square it (87.11111114) and add it to both sides.

Add '87.11111114' to each side of the equation.
-18.66666667x + 87.11111114 + x2 = -41.33333333 + 87.11111114

Reorder the terms:
87.11111114 + -18.66666667x + x2 = -41.33333333 + 87.11111114

Combine like terms: -41.33333333 + 87.11111114 = 45.77777781
87.11111114 + -18.66666667x + x2 = 45.77777781

Factor a perfect square on the left side:
((x) + -9.333333335)((x) + -9.333333335) = 45.77777781

Calculate the square root of the right side: 6.765927712

Break this problem into two subproblems by setting 
((x) + -9.333333335) equal to 6.765927712 and -6.765927712.

Subproblem 1

(x) + -9.333333335 = 6.765927712 Simplifying (x) + -9.333333335 = 6.765927712 x + -9.333333335 = 6.765927712 Reorder the terms: -9.333333335 + x = 6.765927712 Solving -9.333333335 + x = 6.765927712 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '9.333333335' to each side of the equation. -9.333333335 + 9.333333335 + x = 6.765927712 + 9.333333335 Combine like terms: -9.333333335 + 9.333333335 = 0.000000000 0.000000000 + x = 6.765927712 + 9.333333335 x = 6.765927712 + 9.333333335 Combine like terms: 6.765927712 + 9.333333335 = 16.099261047 x = 16.099261047 Simplifying x = 16.099261047

Subproblem 2

(x) + -9.333333335 = -6.765927712 Simplifying (x) + -9.333333335 = -6.765927712 x + -9.333333335 = -6.765927712 Reorder the terms: -9.333333335 + x = -6.765927712 Solving -9.333333335 + x = -6.765927712 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '9.333333335' to each side of the equation. -9.333333335 + 9.333333335 + x = -6.765927712 + 9.333333335 Combine like terms: -9.333333335 + 9.333333335 = 0.000000000 0.000000000 + x = -6.765927712 + 9.333333335 x = -6.765927712 + 9.333333335 Combine like terms: -6.765927712 + 9.333333335 = 2.567405623 x = 2.567405623 Simplifying x = 2.567405623

Solution

The solution to the problem is based on the solutions from the subproblems. x = {16.099261047, 2.567405623}

See similar equations:

| 8(t-2)+4t=6(2t+2)-11 | | 20c^2-17c-10=0 | | 2k-5k-5=-15 | | -4+xy=z | | -2k-3=13 | | x+5+12=10 | | 9x-1=x+4 | | 5n-12=n+16 | | n*n=75 | | -[5z-(8z+2)]=2+(2z+8) | | 7-3r=34 | | 2x+45+0.5x=150 | | 5m-4=54 | | 4x-4(-x+5)=x-(-2x)-3-4x+10 | | (9)-1/9(x-27)+(9)1/3(x+3)=x-59 | | 1/2m+1/2n=2 | | x=2(5y-8)-(9y+2) | | 10k-2k-10=14 | | 433x=11-3 | | 3x+12=2x+29 | | -30+6z=-7(5z+9) | | 9=2h+9 | | 5x+2=3x+17 | | 5.6x+2.3y=32.9 | | -3x-(-2)=8-2x | | 50/250 | | -3x-2(7++5x)=11-3(2x-3) | | 5[x]+4=79 | | 4x-2(-x)=24 | | 9t^3-4t=0 | | 110-r=10-20 | | 185x+(-7625)= |

Equations solver categories